云上小悟
首页   关于   小悟志   栏目   标签   文章   归档   友链   联系

   云上小悟  +  

当前位置 : 首页 » 7788 » 勾股定理的非数学知识 正文

勾股定理的非数学知识

7788 / by: 麦新杰 / 发布:2016年10月21日 / 10次阅读 / 1条评论
标签:老男孩学数学   / 最后修改时间: 2016-10-21 15:51:59

7788 / 2016年10月21日 / 10次阅读 / 标签:老男孩学数学  


勾股定理的非数学知识

勾股定理是一个基本的几何定理,直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a²+b²=c² 。勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。勾股数组成a²+b²=c²的正整数组(a,b,c)。(3,4,5)就是勾股数。

 

勾股定理在中国的历史

公元前十一世纪,周朝数学家商高就提出“勾三、股四、弦五”。《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”意为:当直角三角形的两条直角边分别为3(勾)和4(股)时,径隅(弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,根据该典故称勾股定理为商高定理。

公元三世纪,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,记录于《九章算术》中“勾股各自乘,并而开方除之,即弦”,赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。后刘徽在刘徽注中亦证明了勾股定理。

在中国清朝末年,数学家华蘅芳提出了二十多种对于勾股定理证法。

 

勾股定理在西方的历史

远在公元前约三千年的古巴比伦人就知道和应用勾股定理,他们还知道许多勾股数组。美国哥伦比亚大学图书馆内收藏着一块编号为“普林顿322”的古巴比伦泥板,上面就记载了很多勾股数。古埃及人在建筑宏伟的金字塔和测量尼罗河泛滥后的土地时,也应用过勾股定理。

公元前六世纪,希腊数学家毕达哥拉斯证明了勾股定理,因而西方人都习惯地称这个定理为毕达哥拉斯定理。

公元前4世纪,希腊数学家欧几里得在《几何原本》中给出一个证明。

1876年4月1日,加菲尔德在《新英格兰教育日志》上发表了他对勾股定理的一个证法。

1940年《毕达哥拉斯命题》出版,收集了367种不同的证法。

 

勾股定理的意义

1.勾股定理的证明是论证几何的发端;

2.勾股定理是历史上第一个把数与形联系起来的定理,即它是第一个把几何与代数联系起来的定理;

3.勾股定理导致了无理数的发现,引起第一次数学危机,大大加深了人们对数的理解;

4.勾股定理是历史上第—个给出了完全解答的不定方程,它引出了费马大定理;

5.勾股定理是欧氏几何的基础定理,并有巨大的实用价值.这条定理不仅在几何学中是一颗光彩夺目的明珠,被誉为“几何学的基石”,而且在高等数学和其他科学领域也有着广泛的应用.1971年5月15日,尼加拉瓜发行了一套题为“改变世界面貌的十个数学公式”邮票,这十个数学公式由著名数学家选出的,勾股定理是其中之首。

本文固定链接:http://www.maixj.net/misc/gougudingli-13323

“勾股定理的非数学知识”有1条评论

发表评论

电子邮件地址不会被公开。 必填项已用*标注

  • 子风  says:

    古希腊毕达哥拉斯应该是提出”勾股定理“之后,人们才发现的根号2是一个无理数,进而引发第一次数学危机。据说毕达哥拉斯发现定理之后,一度兴奋过度。这就是发现真理的兴奋呀。   [ 回复 ]


前一篇:
后一篇:

麦新杰的云上小悟独立博客网站文章内容,除非特别注明,全部都是原创,如需转载,请先阅读版权声明!原创文章更具个性,有些文字虽略显随意,但不影响个人思想表达。部分文章是我自己的笔记,为自己记录,总结和收藏,同时也分享给您!这是本博建设的出发点,希望您喜欢并得到您的支持!喝杯茶,慢慢阅读...

©Copyright 麦新杰 SINCE 2014 云上小悟独立博客版权所有  备案号:苏ICP备14045477号-1  

本站360安全检测  Valid CSS!